// Coding along: https://docs.vulkan.org/tutorial/ // comment and simplify and abstract away // make pure/static as much as possible // build with cmake for: linux/freebsd/mac/win/android/ios? // raymarch game #define GLFW_INCLUDE_VULKAN #include #include #include #include #include #include #include #include #include #include #include #include #include class HelloTriangleApplication { public: void run() { std::cout << "enableValidationLayers = " << enableValidationLayers << std::endl; initWindow(); initVulkan(); mainLoop(); cleanup(); } private: static const int MAX_FRAMES_IN_FLIGHT = 2; static const uint32_t WIDTH = 800; static const uint32_t HEIGHT = 600; #ifdef NDEBUG static const bool enableValidationLayers = false; #else static const bool enableValidationLayers = true; #endif static const VkDebugUtilsMessageSeverityFlagBitsEXT minDebugMessageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT; const std::vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; const std::vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; // READ FILE - HELPER static std::vector readFile(const std::string& filename) { std::ifstream file(filename, std::ios::ate | std::ios::binary); if (!file.is_open()) throw std::runtime_error("failed to open file!"); size_t fileSize = (size_t) file.tellg(); std::vector buffer(fileSize); file.seekg(0); file.read(buffer.data(), fileSize); file.close(); return buffer; } // JUST LIST AVILABLE EXTENSIONS static void listExt() { uint32_t extensionCount = 0; vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr); std::vector extensionslist(extensionCount); vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensionslist.data()); for (const auto& extension : extensionslist) { std::cout << "EXT: " << extension.extensionName << std::endl; } } // CHECK SUCCESS - HELPER static void checkSucc(const std::string &str, VkResult res){ if(res!=VK_SUCCESS) throw std::runtime_error("failed to: " + str); } bool quit=false; GLFWwindow* window; VkInstance instance; VkDebugUtilsMessengerEXT debugMessenger; VkSurfaceKHR surface; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; VkDevice device; VkQueue graphicsQueue; VkQueue presentQueue; VkSwapchainKHR swapChain; std::vector swapChainImages; VkFormat swapChainImageFormat; VkExtent2D swapChainExtent; std::vector swapChainImageViews; VkRenderPass renderPass; VkPipelineLayout pipelineLayout; VkPipeline graphicsPipeline; std::vector swapChainFramebuffers; VkCommandPool commandPool; VkCommandBuffer commandBuffer; VkSemaphore imageAvailableSemaphore; VkSemaphore renderFinishedSemaphore; VkFence inFlightFence; void initWindow() { glfwInit(); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); // no OpenGL glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); // no resizing window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr); glfwSetWindowUserPointer(window, this); glfwSetKeyCallback(window, key_callback); glfwSetWindowPos(window, 1000, 1000); } static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods) { if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) { std::cout << "ESC pressed -> quitting" << std::endl; static_cast(glfwGetWindowUserPointer(window))->quit = true; } } void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) { createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; createInfo.pfnUserCallback = debugCallback; createInfo.pUserData = nullptr; // Optional } static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback( VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { if (messageSeverity >= minDebugMessageSeverity) { std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl; } return VK_FALSE; } void initVulkan() { createInstance(); // 01 Setup -> Instance setupDebugMessenger(); // 02 Setup -> Validation Layers createSurface(); // 05 Presentation -> Window surface pickPhysicalDevice(); // 03 Setup -> Physical Device createLogicalDevice(); // 04 Setup -> Logical Device createSwapChain(); // 06 Presentation -> Swap Chain createImageViews(); // 07 Presentation -> Image Views createRenderPass(); // 11 Graphics Pipeline -> RenderPasses createGraphicsPipeline(); // 08 Graphics Pipeline -> Introduction createFramebuffers(); // 12 Drawing -> Framebuffers createCommandPool(); // 13 Drawing -> Commmand Buffers createCommandBuffer(); // -- createSyncObjects (); // 14 Drawing -> Rendering } void createSyncObjects() { VkSemaphoreCreateInfo semaphoreInfo{}; semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkFenceCreateInfo fenceInfo{}; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS || vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphore) != VK_SUCCESS || vkCreateFence(device, &fenceInfo, nullptr, &inFlightFence) != VK_SUCCESS) { throw std::runtime_error("failed to create semaphores!"); } } void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) { VkCommandBufferBeginInfo beginInfo{}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = 0; // Optional beginInfo.pInheritanceInfo = nullptr; // Optional if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) { throw std::runtime_error("failed to begin recording command buffer!"); } VkRenderPassBeginInfo renderPassInfo{}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassInfo.renderPass = renderPass; renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex]; renderPassInfo.renderArea.offset = {0, 0}; renderPassInfo.renderArea.extent = swapChainExtent; VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; renderPassInfo.clearValueCount = 1; renderPassInfo.pClearValues = &clearColor; vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); VkViewport viewport{}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = static_cast(swapChainExtent.width); viewport.height = static_cast(swapChainExtent.height); viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; vkCmdSetViewport(commandBuffer, 0, 1, &viewport); VkRect2D scissor{}; scissor.offset = {0, 0}; scissor.extent = swapChainExtent; vkCmdSetScissor(commandBuffer, 0, 1, &scissor); // verex count, instance count, first vertex, first instance vkCmdDraw(commandBuffer, 6, 1, 0, 0); vkCmdEndRenderPass(commandBuffer); if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) { throw std::runtime_error("failed to record command buffer!"); } } void createCommandBuffer() { VkCommandBufferAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.commandPool = commandPool; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandBufferCount = 1; if (vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer) != VK_SUCCESS) { throw std::runtime_error("failed to allocate command buffers!"); } } void createCommandPool() { QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice); VkCommandPoolCreateInfo poolInfo{}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value(); if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) { throw std::runtime_error("failed to create command pool!"); } } void createFramebuffers() { swapChainFramebuffers.resize(swapChainImageViews.size()); for (size_t i = 0; i < swapChainImageViews.size(); i++) { VkImageView attachments[] = { swapChainImageViews[i] }; VkFramebufferCreateInfo framebufferInfo{}; framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebufferInfo.renderPass = renderPass; framebufferInfo.attachmentCount = 1; framebufferInfo.pAttachments = attachments; framebufferInfo.width = swapChainExtent.width; framebufferInfo.height = swapChainExtent.height; framebufferInfo.layers = 1; if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) { throw std::runtime_error("failed to create framebuffer!"); } } } void createRenderPass() { VkAttachmentDescription colorAttachment{}; colorAttachment.format = swapChainImageFormat; colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference colorAttachmentRef{}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass{}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorAttachmentRef; VkSubpassDependency dependency{}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; // implicit subpass before OR after render pass (depends if defined on src or dst) dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstSubpass = 0; // our one and only pass dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; VkRenderPassCreateInfo renderPassInfo{}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = 1; renderPassInfo.pAttachments = &colorAttachment; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 1; renderPassInfo.pDependencies = &dependency; if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) { throw std::runtime_error("failed to create render pass!"); } } void createGraphicsPipeline() { // 09 Graphics Pipeline -> Shader Modules auto vertShaderCode = readFile("shaders/vert.spv"); auto fragShaderCode = readFile("shaders/frag.spv"); std::cout << vertShaderCode.size() << std::endl; std::cout << fragShaderCode.size() << std::endl; VkShaderModule vertShaderModule = createShaderModule(vertShaderCode); VkShaderModule fragShaderModule = createShaderModule(fragShaderCode); VkPipelineShaderStageCreateInfo vertShaderStageInfo{}; vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertShaderStageInfo.module = vertShaderModule; vertShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragShaderStageInfo{}; fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragShaderStageInfo.module = fragShaderModule; fragShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo}; // 10 Graphics Pipeline -> Fixed Functions std::vector dynamicStates = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState{}; dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.dynamicStateCount = static_cast(dynamicStates.size()); dynamicState.pDynamicStates = dynamicStates.data(); VkPipelineVertexInputStateCreateInfo vertexInputInfo{}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo.vertexBindingDescriptionCount = 0; vertexInputInfo.pVertexBindingDescriptions = nullptr; // Optional vertexInputInfo.vertexAttributeDescriptionCount = 0; vertexInputInfo.pVertexAttributeDescriptions = nullptr; // Optional VkPipelineInputAssemblyStateCreateInfo inputAssembly{}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; inputAssembly.primitiveRestartEnable = VK_FALSE; /* VkViewport viewport{}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float) swapChainExtent.width; viewport.height = (float) swapChainExtent.height; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor{}; scissor.offset = {0, 0}; scissor.extent = swapChainExtent; */ // DYN STATE VkPipelineViewportStateCreateInfo viewportState{}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.scissorCount = 1; // VkPipelineViewportStateCreateInfo viewportState{}; // viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; // viewportState.viewportCount = 1; // viewportState.pViewports = &viewport; // viewportState.scissorCount = 1; // viewportState.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo rasterizer{}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = VK_POLYGON_MODE_FILL; rasterizer.lineWidth = 1.0f; rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE; rasterizer.depthBiasEnable = VK_FALSE; rasterizer.depthBiasConstantFactor = 0.0f; // Optional rasterizer.depthBiasClamp = 0.0f; // Optional rasterizer.depthBiasSlopeFactor = 0.0f; // Optional VkPipelineMultisampleStateCreateInfo multisampling{}; multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampling.sampleShadingEnable = VK_FALSE; multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampling.minSampleShading = 1.0f; // Optional multisampling.pSampleMask = nullptr; // Optional multisampling.alphaToCoverageEnable = VK_FALSE; // Optional multisampling.alphaToOneEnable = VK_FALSE; // Optional VkPipelineColorBlendAttachmentState colorBlendAttachment{}; colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; colorBlendAttachment.blendEnable = VK_FALSE; colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional VkPipelineColorBlendStateCreateInfo colorBlending{}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.logicOp = VK_LOGIC_OP_COPY; // Optional colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; colorBlending.blendConstants[0] = 0.0f; // Optional colorBlending.blendConstants[1] = 0.0f; // Optional colorBlending.blendConstants[2] = 0.0f; // Optional colorBlending.blendConstants[3] = 0.0f; // Optional VkPipelineLayoutCreateInfo pipelineLayoutInfo{}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutInfo.setLayoutCount = 0; // Optional pipelineLayoutInfo.pSetLayouts = nullptr; // Optional pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional pipelineLayoutInfo.pPushConstantRanges = nullptr; // Optional if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) { throw std::runtime_error("failed to create pipeline layout!"); } // 12 Graphics Pipeline -> Conclusion VkGraphicsPipelineCreateInfo pipelineInfo{}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = shaderStages; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisampling; pipelineInfo.pDepthStencilState = nullptr; // Optional pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = &dynamicState; pipelineInfo.layout = pipelineLayout; pipelineInfo.renderPass = renderPass; pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional pipelineInfo.basePipelineIndex = -1; // Optional if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { throw std::runtime_error("failed to create graphics pipeline!"); } // vkDestroyShaderModule(device, fragShaderModule, nullptr); vkDestroyShaderModule(device, vertShaderModule, nullptr); } VkShaderModule createShaderModule(const std::vector& code) { VkShaderModuleCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; createInfo.codeSize = code.size(); createInfo.pCode = reinterpret_cast(code.data()); VkShaderModule shaderModule; if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) { throw std::runtime_error("failed to create shader module!"); } return shaderModule; } void createImageViews() { swapChainImageViews.resize(swapChainImages.size()); for (size_t i = 0; i < swapChainImages.size(); i++) { std::cout << "Swap Chain Image: " << i << std::endl; VkImageViewCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; createInfo.image = swapChainImages[i]; createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; createInfo.format = swapChainImageFormat; createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; createInfo.subresourceRange.baseMipLevel = 0; createInfo.subresourceRange.levelCount = 1; createInfo.subresourceRange.baseArrayLayer = 0; createInfo.subresourceRange.layerCount = 1; if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) { throw std::runtime_error("failed to create image views!"); } } } void createSwapChain() { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities); uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { imageCount = swapChainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()}; if (indices.graphicsFamily != indices.presentFamily) { // handle swap chain across different queues createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createInfo.queueFamilyIndexCount = 2; createInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; // Optional createInfo.pQueueFamilyIndices = nullptr; // Optional } createInfo.preTransform = swapChainSupport.capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; // don't care about pixels obscured by other windows (we do not need to read them back) createInfo.oldSwapchain = VK_NULL_HANDLE; if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) { throw std::runtime_error("failed to create swap chain!"); } vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr); swapChainImages.resize(imageCount); vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data()); swapChainImageFormat = surfaceFormat.format; swapChainExtent = extent; } void createSurface() { if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) { throw std::runtime_error("failed to create window surface!"); } } void createLogicalDevice() { QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::set uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()}; VkPhysicalDeviceFeatures deviceFeatures{}; VkDeviceCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); // for backward compat. if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } std::vector queueCreateInfos; for (uint32_t queueFamily : uniqueQueueFamilies) { float queuePriority = 1.0f; VkDeviceQueueCreateInfo queueCreateInfo{}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } createInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createInfo.pQueueCreateInfos = queueCreateInfos.data(); if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) { throw std::runtime_error("failed to create logical device!"); } vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue); vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue); } void pickPhysicalDevice() { // we could rate and sort and pick best, but let's keep simple for now. uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw std::runtime_error("failed to find GPUs with Vulkan support!"); } std::vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const auto& device : devices) if (isDeviceSuitable(device)) { if (physicalDevice == VK_NULL_HANDLE) physicalDevice=device; } if (physicalDevice == VK_NULL_HANDLE) throw std::runtime_error("failed to find a suitable GPU!"); } bool isDeviceSuitable(VkPhysicalDevice device) { VkPhysicalDeviceProperties deviceProperties; VkPhysicalDeviceFeatures deviceFeatures; vkGetPhysicalDeviceProperties(device, &deviceProperties); vkGetPhysicalDeviceFeatures(device, &deviceFeatures); bool discrete = deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU; std::cout << "PHYSICAL DEVICE: " << deviceProperties.deviceName << " discrete:" << discrete << std::endl; printQueueFamilies(device); // return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU && deviceFeatures.geometryShader; QueueFamilyIndices indices = findQueueFamilies(device); bool extensionsSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if (extensionsSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); } return indices.isComplete() && extensionsSupported && swapChainAdequate; } bool checkDeviceExtensionSupport(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); std::set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const auto& extension : availableExtensions) { // std::cout << "Available Device Extension: " << extension.extensionName << std::endl; requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } void setupDebugMessenger() { if (!enableValidationLayers) return; VkDebugUtilsMessengerCreateInfoEXT createInfo; populateDebugMessengerCreateInfo(createInfo); if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) { throw std::runtime_error("failed to set up debug messenger!"); } } void drawFrame() { vkWaitForFences(device, 1, &inFlightFence, VK_TRUE, UINT64_MAX); vkResetFences(device, 1, &inFlightFence); uint32_t imageIndex; vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex); vkResetCommandBuffer(commandBuffer, 0); recordCommandBuffer(commandBuffer, imageIndex); VkSubmitInfo submitInfo{}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; VkSemaphore waitSemaphores[] = {imageAvailableSemaphore}; VkSemaphore signalSemaphores[] = {renderFinishedSemaphore}; VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT}; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = signalSemaphores; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFence) != VK_SUCCESS) { throw std::runtime_error("failed to submit draw command buffer!"); } VkPresentInfoKHR presentInfo{}; VkSwapchainKHR swapChains[] = {swapChain}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = signalSemaphores; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapChains; presentInfo.pImageIndices = &imageIndex; presentInfo.pResults = nullptr; // Optional vkQueuePresentKHR(presentQueue, &presentInfo); } void createInstance() { VkApplicationInfo appInfo{}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "Hello Triangle"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; auto extensions = getRequiredExtensions(); if (enableValidationLayers && !checkValidationLayerSupport()) { throw std::runtime_error("validation layers requested, but not available!"); } VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{}; populateDebugMessengerCreateInfo(debugCreateInfo); VkInstanceCreateInfo createInfo{}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; createInfo.enabledExtensionCount = static_cast(extensions.size()); createInfo.ppEnabledExtensionNames = extensions.data(); if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo; // for debugging of: vkCreateInstance & vkDestroyInstance } else { createInfo.enabledLayerCount = 0; createInfo.pNext = nullptr; } // Create Instance checkSucc("CREATE INSTANCE", vkCreateInstance(&createInfo, nullptr, &instance)); } // instance validation layers apply to all Vulkan calls (enble on device level for compat) const bool checkValidationLayerSupport() { uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers) { bool layerFound = false; for (const auto& layerProperties : availableLayers) { std::cout << "LAYER AVAILABLE: " << layerProperties.layerName << std::endl; if (strcmp(layerName, layerProperties.layerName) == 0) layerFound=true; } if (!layerFound) return false; } return true; } static std::vector getRequiredExtensions() { uint32_t glfwExtensionCount = 0; const char** glfwExtensions; glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); //e.g VK_KHR_surface std::vector extensions(glfwExtensions, glfwExtensions + glfwExtensionCount); // pointer range if (enableValidationLayers) { extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); } for (const auto s:extensions){ std:: cout << "REQUIRED EXTENSION: " << s << std::endl; } return extensions; } VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) { auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT"); if (func != nullptr) { return func(instance, pCreateInfo, pAllocator, pDebugMessenger); } else { return VK_ERROR_EXTENSION_NOT_PRESENT; } } void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) { auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT"); if (func != nullptr) { func(instance, debugMessenger, pAllocator); } } struct SwapChainSupportDetails { VkSurfaceCapabilitiesKHR capabilities; std::vector formats; std::vector presentModes; }; SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) { SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr); if (formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr); if (presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data()); } return details; } struct QueueFamilyIndices { std::optional graphicsFamily; std::optional presentFamily; bool isComplete() { return graphicsFamily.has_value() && presentFamily.has_value(); } }; static void printQueueFamilies(VkPhysicalDevice device) { uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0; for (const auto& queueFamily : queueFamilies) { bool gfx = queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT; bool cmp = queueFamily.queueFlags & VK_QUEUE_COMPUTE_BIT; bool trf = queueFamily.queueFlags & VK_QUEUE_TRANSFER_BIT; std::cout << "QUEUE FAMILY " << i << " : x " << queueFamily.queueCount << " gfx=" << gfx << " cmp=" << cmp << " trf=" << trf << std::endl; i++; } } QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) { uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); QueueFamilyIndices indices; int i = 0; for (const auto& queueFamily : queueFamilies) { if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) { indices.graphicsFamily = i; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport); if (presentSupport) { indices.presentFamily = i; } if (indices.isComplete()) { break; } i++; } return indices; } VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector& availableFormats) { for (const auto& availableFormat : availableFormats) { if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return availableFormat; } } return availableFormats[0]; } VkPresentModeKHR chooseSwapPresentMode(const std::vector& availablePresentModes) { for (const auto& availablePresentMode : availablePresentModes) { if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) { return availablePresentMode; } } return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) { if (capabilities.currentExtent.width != std::numeric_limits::max()) { return capabilities.currentExtent; } else { int width, height; glfwGetFramebufferSize(window, &width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); return actualExtent; } } void mainLoop() { std::cout << "Enter Main Loop" << std::endl; while (!glfwWindowShouldClose(window) && !quit) { glfwPollEvents(); drawFrame(); // 14 Drawing -> Rendering } vkDeviceWaitIdle(device); std::cout << "Exit Main Loop" << std::endl; } void cleanup() { vkDestroySemaphore(device, imageAvailableSemaphore, nullptr); vkDestroySemaphore(device, renderFinishedSemaphore, nullptr); vkDestroyFence(device, inFlightFence, nullptr); vkDestroyCommandPool(device, commandPool, nullptr); for (auto framebuffer : swapChainFramebuffers) { vkDestroyFramebuffer(device, framebuffer, nullptr); } vkDestroyPipeline(device, graphicsPipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyRenderPass(device, renderPass, nullptr); for (auto imageView : swapChainImageViews) { vkDestroyImageView(device, imageView, nullptr); } vkDestroySwapchainKHR(device, swapChain, nullptr); vkDestroyDevice(device, nullptr); if (enableValidationLayers) { DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr); } vkDestroySurfaceKHR(instance, surface, nullptr); vkDestroyInstance(instance, nullptr); glfwDestroyWindow(window); glfwTerminate(); } }; int main() { HelloTriangleApplication app; std::cout << "Miguel's Vulkan" << std::endl; try { app.run(); } catch (const std::exception& e) { std::cout << "Exception" << std::endl; std::cerr << e.what() << std::endl; return EXIT_FAILURE; } std::cout << "Finito" << std::endl; return EXIT_SUCCESS; }