1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
//https://github.com/blanham/ChickenOS/blob/master/src/device/net/e1000.c
//https://wiki.osdev.org/Intel_Ethernet_i217
#include <stdint.h>
#include "log.h"
#include "e1000.h"
#include "kmalloc.h"
#define INTEL_VEND 0x8086 // Vendor ID for Intel
#define E1000_DEV 0x100E // Device ID for the e1000 Qemu, Bochs, and VirtualBox emmulated NICs
#define E1000_I217 0x153A // Device ID for Intel I217
#define E1000_82577LM 0x10EA // Device ID for Intel 82577LM
// I have gathered those from different Hobby online operating systems instead of getting them one by one from the manual
#define REG_CTRL 0x0000
#define REG_ICR 0x00C0 // interrupt cause register
#define REG_STATUS 0x0008
#define REG_EEPROM 0x0014
#define REG_CTRL_EXT 0x0018
#define REG_IMASK 0x00D0
#define REG_RCTRL 0x0100
#define REG_RXDESCLO 0x2800
#define REG_RXDESCHI 0x2804
#define REG_RXDESCLEN 0x2808
#define REG_RXDESCHEAD 0x2810
#define REG_RXDESCTAIL 0x2818
#define REG_TCTRL 0x0400
#define REG_TXDESCLO 0x3800
#define REG_TXDESCHI 0x3804
#define REG_TXDESCLEN 0x3808
#define REG_TXDESCHEAD 0x3810
#define REG_TXDESCTAIL 0x3818
#define REG_RDTR 0x2820 // RX Delay Timer Register
#define REG_RXDCTL 0x3828 // RX Descriptor Control
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
#define ECTRL_SLU 0x40 //set link up
#define RCTL_EN (1 << 1) // Receiver Enable
#define RCTL_SBP (1 << 2) // Store Bad Packets
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
#define RCTL_LBM_NONE (0 << 6) // No Loopback
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
#define RCTL_DPF (1 << 22) // Discard Pause Frames
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
// Buffer Sizes
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
// Transmit Command
#define CMD_EOP (1 << 0) // End of Packet
#define CMD_IFCS (1 << 1) // Insert FCS
#define CMD_IC (1 << 2) // Insert Checksum
#define CMD_RS (1 << 3) // Report Status
#define CMD_RPS (1 << 4) // Report Packet Sent
#define CMD_VLE (1 << 6) // VLAN Packet Enable
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
// TCTL Register
#define TCTL_EN (1 << 1) // Transmit Enable
#define TCTL_PSP (1 << 3) // Pad Short Packets
#define TCTL_CT_SHIFT 4 // Collision Threshold
#define TCTL_COLD_SHIFT 12 // Collision Distance
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
#define TSTA_DD (1 << 0) // Descriptor Done
#define TSTA_EC (1 << 1) // Excess Collisions
#define TSTA_LC (1 << 2) // Late Collision
#define LSTA_TU (1 << 3) // Transmit Underrun
// buffers
#define E1000_NUM_RX_DESC 32
#define E1000_NUM_TX_DESC 8
struct e1000_rx_desc {
volatile uint64_t addr;
volatile uint16_t length;
volatile uint16_t checksum;
volatile uint8_t status;
volatile uint8_t errors;
volatile uint16_t special;
} __attribute__((packed));
struct e1000_tx_desc {
volatile uint64_t addr;
volatile uint16_t length;
volatile uint8_t cso;
volatile uint8_t cmd;
volatile uint8_t status;
volatile uint8_t css;
volatile uint16_t special;
} __attribute__((packed));
uint8_t bar_type; // Type of BOR0
uint16_t io_base; // IO Base Address
uint32_t mem_base; // MMIO Base Address
bool eerprom_exists; // A flag indicating if eeprom exists
uint8_t mac [6]; // A buffer for storing the mack address
struct e1000_rx_desc *rx_descs[E1000_NUM_RX_DESC]; // Receive Descriptor Buffers
struct e1000_tx_desc *tx_descs[E1000_NUM_TX_DESC]; // Transmit Descriptor Buffers
uint16_t rx_cur; // Current Receive Descriptor Buffer
uint16_t tx_cur; // Current Transmit Descriptor Buffer
void writeCommand( uint16_t p_address, uint32_t p_value)
{
// if ( bar_type == 0 )
// {
(*((volatile uint32_t*)(mem_base+p_address)))=(p_value);
// }
// else
// {
//outportl(io_base, p_address);
//outportl(io_base + 4, p_value);
// }
}
uint32_t readCommand( uint16_t p_address)
{
// if ( bar_type == 0 )
// {
return *((volatile uint32_t*)(mem_base+p_address));
// }
// else
// {
//outportl(io_base, p_address);
//return inportl(io_base + 4);
// }
}
bool detectEEProm()
{
uint32_t val = 0;
writeCommand(REG_EEPROM, 0x1);
for(int i = 0; i < 1000 && ! eerprom_exists; i++)
{
val = readCommand( REG_EEPROM);
if(val & 0x10)
eerprom_exists = true;
else
eerprom_exists = false;
}
klog("eeprom %s",eerprom_exists?"YES":"NO");
return eerprom_exists;
}
uint32_t eepromRead( uint8_t addr)
{
uint16_t data = 0;
uint32_t tmp = 0;
if ( eerprom_exists)
{
writeCommand( REG_EEPROM, (1) | ((uint32_t)(addr) << 8) );
while( !((tmp = readCommand(REG_EEPROM)) & (1 << 4)) );
}
else
{
writeCommand( REG_EEPROM, (1) | ((uint32_t)(addr) << 2) );
while( !((tmp = readCommand(REG_EEPROM)) & (1 << 1)) );
}
data = (uint16_t)((tmp >> 16) & 0xFFFF);
return data;
}
bool readMACAddress()
{
if ( eerprom_exists)
{
uint32_t temp;
temp = eepromRead( 0);
mac[0] = temp &0xff;
mac[1] = temp >> 8;
temp = eepromRead( 1);
mac[2] = temp &0xff;
mac[3] = temp >> 8;
temp = eepromRead( 2);
mac[4] = temp &0xff;
mac[5] = temp >> 8;
}
else
{
uint8_t * mem_base_mac_8 = (uint8_t *) (mem_base+0x5400);
uint32_t * mem_base_mac_32 = (uint32_t *) (mem_base+0x5400);
if ( mem_base_mac_32[0] != 0 )
{
for(int i = 0; i < 6; i++)
{
mac[i] = mem_base_mac_8[i];
}
}
else return false;
}
return true;
}
void rxinit()
{
uint8_t * ptr;
struct e1000_rx_desc *descs;
// Allocate buffer for receive descriptors. For simplicity, in my case khmalloc returns a virtual address that is identical to it physical mapped address.
// In your case you should handle virtual and physical addresses as the addresses passed to the NIC should be physical onesk
uint32_t alloc_pages=1+(sizeof(struct e1000_rx_desc)*E1000_NUM_RX_DESC + 16)/4096;
ptr = kballoc(alloc_pages);
descs = (struct e1000_rx_desc *)ptr;
for(int i = 0; i < E1000_NUM_RX_DESC; i++)
{
rx_descs[i] = (struct e1000_rx_desc *)((uint8_t *)descs + i*16);
rx_descs[i]->addr = kballoc(3); // what a waste :( TODO!
rx_descs[i]->status = 0;
}
/*
writeCommand(REG_TXDESCLO, (uint32_t)((uint64_t)ptr >> 32) );
writeCommand(REG_TXDESCHI, (uint32_t)((uint64_t)ptr & 0xFFFFFFFF));
writeCommand(REG_TXDESCLO, (uint32_t)(0) );
writeCommand(REG_TXDESCHI, (uint32_t)(ptr));
*/
writeCommand(REG_RXDESCLO, ptr);
writeCommand(REG_RXDESCHI, 0);
writeCommand(REG_RXDESCLEN, E1000_NUM_RX_DESC * 16);
writeCommand(REG_RXDESCHEAD, 0);
writeCommand(REG_RXDESCTAIL, E1000_NUM_RX_DESC-1);
rx_cur = 0;
//enable receiving
//uint32_t flags = (2 << 16) | (1 << 25) | (1 << 26) | (1 << 15) | (1 << 5) | (0 << 8) | (0 << 4) | (0 << 3) | ( 1 << 2);
//writeCommand(REG_RCTRL, flags);
writeCommand(REG_RCTRL, RCTL_EN| RCTL_SBP| RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_2048);
}
void txinit()
{
uint8_t * ptr;
// Allocate buffer for receive descriptors. For simplicity, in my case khmalloc returns a virtual address that is identical to it physical mapped address.
// In your case you should handle virtual and physical addresses as the addresses passed to the NIC should be physical ones
uint32_t alloc_pages=1+(sizeof(struct e1000_tx_desc)*E1000_NUM_TX_DESC + 16)/4096;
ptr = kballoc(alloc_pages);
struct e1000_tx_desc *descs=ptr;
for(int i = 0; i < E1000_NUM_TX_DESC; i++)
{
tx_descs[i] = descs++;
tx_descs[i]->addr = 0;
tx_descs[i]->cmd = 0;
tx_descs[i]->status = TSTA_DD;
}
writeCommand(REG_TXDESCLO, ptr); //physical here
writeCommand(REG_TXDESCHI, 0);
//now setup total length of descriptors
writeCommand(REG_TXDESCLEN, E1000_NUM_TX_DESC * 16); //
//setup numbers
writeCommand( REG_TXDESCHEAD, 0);
writeCommand( REG_TXDESCTAIL, 0);
tx_cur = 0;
writeCommand(REG_TCTRL, TCTL_EN
| TCTL_PSP
| (15 << TCTL_CT_SHIFT)
| (64 << TCTL_COLD_SHIFT)
| TCTL_RTLC);
/*
writeCommand(REG_TCTRL,
1<<0 // enable transmitter
|1<<3 // pad short packets
// ,64<<12 // collision distance
);
*/
// This line of code overrides the one before it but I left both to
// highlight that the previous one works with e1000 cards, but for the
// e1000e cards you should set the TCTRL register as follows. For detailed
// description of each bit, please refer to the Intel Manual. In the case
// of I217 and 82577LM packets will not be sent if the TCTRL is not
// configured using the following bits.
//writeCommand(REG_TCTRL, 0b0110000000000111111000011111010);
//writeCommand(REG_TIPG, 0x0060200A);
}
void e1000_handleReceive()
{
uint16_t old_cur;
bool got_packet = false;
while((rx_descs[rx_cur]->status & 0x1))
{
got_packet = true;
klog("GOT FIRST PACKET WOOOOW");
uint8_t *buf = (uint8_t *)(uint32_t)rx_descs[rx_cur]->addr;
uint16_t len = rx_descs[rx_cur]->length;
// Here you should inject the received packet into your network stack
rx_descs[rx_cur]->status = 0;
old_cur = rx_cur;
rx_cur = (rx_cur + 1) % E1000_NUM_RX_DESC;
writeCommand(REG_RXDESCTAIL, old_cur );
}
}
int e1000_sendPacket(const void * p_data, uint16_t p_len)
{
tx_descs[tx_cur]->addr = p_data; // physical addy of data
tx_descs[tx_cur]->length = p_len; // length in bytes
//tx_descs[tx_cur]->cmd = CMD_EOP | CMD_IFCS | CMD_RS | CMD_RPS;
tx_descs[tx_cur]->cmd = ((1<<3)|3);
tx_descs[tx_cur]->status = 0;
uint8_t old_cur = tx_cur;
tx_cur = (tx_cur + 1) % E1000_NUM_TX_DESC;
writeCommand(REG_TXDESCTAIL, tx_cur);
while(!(tx_descs[old_cur]->status & 0xff));
klog("SENT FIRST PACKET WOOOOW");
return 0;
}
void enableInterrupt()
{
// uint32_t status = readCommand(REG_ICR); // check interrupt cause register.
// klog("status before enabling e1000 interrupts=%d",status);
// writeCommand(REG_IMASK ,0x1F6DC);
// writeCommand(REG_IMASK ,0xff & ~4);
writeCommand(REG_IMASK,0xffffffff);
}
void e1000_linkup()
{
uint32_t val;
val = readCommand(REG_CTRL);
writeCommand(REG_CTRL, val | ECTRL_SLU);
}
void e1000_linkdown()
{
uint32_t val;
val = readCommand(REG_CTRL);
writeCommand(REG_CTRL, val | ~ECTRL_SLU);
}
bool e1000_init(uint32_t base)
{
klog("init E1000");
if(base!=0){ mem_base=base; return true;}
detectEEProm();
if (! readMACAddress()) return false;
klog("mac : %02x:%02x:%02x:%02x:%02x:%02x",mac[0],mac[1],mac[2],mac[3],mac[4],mac[5],mac[6]);
// e1000_linkup();
for(int i = 0; i < 0x80; i++)writeCommand(0x5200 + i*4, 0);
enableInterrupt();
txinit();
rxinit();
klog("E1000 initialized");
return true;
}
void e1000_irq (int irq)
{
// if ( p_interruptContext->getInteruptNumber() == pciConfigHeader->getIntLine()+IRQ0)
// {
/* This might be needed here if your handler doesn't clear interrupts
* from each device and must be done before EOI if using the PIC.
Without this, the card will spam interrupts as the int-line will
stay high. */
//writeCommand(REG_IMASK, 0x1);
//enableInterrupt();
int status =0;
// uint32_t status = readCommand(REG_ICR); // check interrupt cause register.
klog("e1000_irq status=%d",status);
if(status & 0x1) klog ("transmit descriptor written back");
if(status & 0x2) klog ("transmit queue empty");
if(status & 0x4) klog ("link status change");
if(status & 0x8) klog ("receive sequence error");
//...
}
|