1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
#include "kernel/kernel.h"
#include "log.h"
#include "asm_x86.h"
#include "e1000.h"
#define PCI_CONFIG_DATA 0xCFC
#define PCI_CONFIG_ADDRESS 0xCF8
void pciConfigSet (uint8_t bus, uint8_t slot,
uint8_t func, uint8_t offset, uint32_t data)
{
uint32_t address;
uint32_t lbus = (uint32_t)bus;
uint32_t lslot = (uint32_t)slot;
uint32_t lfunc = (uint32_t)func;
uint16_t tmp = 0;
/* create configuration address as per Figure 1 */
address = (uint32_t)((lbus << 16) | (lslot << 11) |
(lfunc << 8) | (offset & 0xfc) | ((uint32_t)0x80000000));
/* write out the address */
x86_outl (0xCF8, address);
x86_outl (0xCFC,data);
}
uint16_t pciConfigReadWord (uint8_t bus, uint8_t slot,
uint8_t func, uint8_t offset)
{
uint32_t address;
uint32_t lbus = (uint32_t)bus;
uint32_t lslot = (uint32_t)slot;
uint32_t lfunc = (uint32_t)func;
uint16_t tmp = 0;
/* create configuration address as per Figure 1 */
address = (uint32_t)((lbus << 16) | (lslot << 11) |
(lfunc << 8) | (offset & 0xfc) | ((uint32_t)0x80000000));
/* write out the address */
x86_outl (0xCF8, address);
/* read in the data */
/* (offset & 2) * 8) = 0 will choose the first word of the 32 bits register */
tmp = (uint16_t)((x86_inl (0xCFC) >> ((offset & 2) * 8)) & 0xffff);
return (tmp);
}
void test_bar(uint8_t bus, uint8_t slot, uint8_t offset)
{
uint16_t bar_low=pciConfigReadWord(bus,slot,0,offset);
uint16_t bar_high=pciConfigReadWord(bus,slot,0,offset+2);
// check size
pciConfigSet(bus,slot,0,offset,0xffffffff);
uint16_t size_low=pciConfigReadWord(bus,slot,0,offset);
uint16_t size_high=pciConfigReadWord(bus,slot,0,offset+2);
uint32_t size=(size_high<<16)+size_low;
size=~size;
size++;
//
// restore original values
pciConfigSet(bus,slot,0,offset,(bar_high<<16)+bar_low);
klog("%s bar: (0x%x 0x%x) size: 0x%x" ,bar_low&1?"i/o":"mem",bar_high, bar_low, size);
}
uint16_t pciCheck(uint8_t bus, uint8_t slot)
{
uint16_t vendor, device;
/* try and read the first configuration register. Since there are no */
/* vendors that == 0xFFFF, it must be a non-existent device. */
if ((vendor = pciConfigReadWord(bus,slot,0,0)) != 0xFFFF)
{
device = pciConfigReadWord(bus,slot,0,2);
klog("[%d,%d]: vendor: 0x%x / device: 0x%x",bus,slot,vendor,device);
// check for: E1000 (82540EM). PCI Ethernet Controller
if(vendor==0x8086&&device==0x100e)
{
// uint16_t irq=pciConfigReadWord(bus,slot,0,0x3C);
// uint16_t irq2=pciConfigReadWord(bus,slot,0,0x3E);
//
init_e1000();
test_bar(bus,slot,0x10);
test_bar(bus,slot,0x14);
test_bar(bus,slot,0x18);
// scr_put_hex(irq);
// scr_put_hex(irq2);
// scr_put_string_nl(";");
}
}
return (vendor);
}
void pci_init()
{
klog("scanning bus");
// todo: recurse on pci to pci bridges!
// todo: support multiple pci host controllers!
// (check more funcitons of device 0:0)
uint16_t bus;
uint8_t device;
for(bus = 0; bus < 256; bus++)
{
for(device = 0; device < 32; device++)
{
pciCheck(bus, device);
}
}
}
|