1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
#include "timer.h"
#include "interrupts.h"
#include "kernel.h"
#include "log.h"
#include "asm_x86.h"
#include "asm_pit.h"
static volatile uint64_t task_system_clock_start=0;
// CMOS RTC
// read real time clock register
static unsigned char get_rtc_reg(int reg) {
x86_outb(0x70, reg); //cmos at addr 0x70
return x86_inb(0x71); //cmos data at addr 0x71
}
// check if cmos rtc update in progress
static int get_rtc_update_flag() {
x86_outb(0x70, 0x0A);
return (x86_inb(0x71) & 0x80);
}
// get real time clock rom cmos (seconds since jan)
static uint64_t get_rtc_time()
{
int CURRENT_YEAR = 2018; // Change this each year!
int century_register = 0x00; // Set by ACPI table parsing code if possible
unsigned char second;
unsigned char minute;
unsigned char hour;
unsigned char day;
unsigned char month;
unsigned int year;
unsigned char century;
unsigned char last_second;
unsigned char last_minute;
unsigned char last_hour;
unsigned char last_day;
unsigned char last_month;
unsigned char last_year;
unsigned char last_century;
unsigned char registerB;
// Note: This uses the "read registers until you get the same values twice in a row" technique
// to avoid getting dodgy/inconsistent values due to RTC updates
while (get_rtc_update_flag()); // Make sure an update isn't in progress
second = get_rtc_reg(0x00);
minute = get_rtc_reg(0x02);
hour = get_rtc_reg(0x04);
day = get_rtc_reg(0x07);
month = get_rtc_reg(0x08);
year = get_rtc_reg(0x09);
if(century_register != 0) {
century = get_rtc_reg(century_register);
}
do {
last_second = second;
last_minute = minute;
last_hour = hour;
last_day = day;
last_month = month;
last_year = year;
last_century = century;
while (get_rtc_update_flag()); // Make sure an update isn't in progress
second = get_rtc_reg(0x00);
minute = get_rtc_reg(0x02);
hour = get_rtc_reg(0x04);
day = get_rtc_reg(0x07);
month = get_rtc_reg(0x08);
year = get_rtc_reg(0x09);
if(century_register != 0) {
century = get_rtc_reg(century_register);
}
} while( (last_second != second) || (last_minute != minute) || (last_hour != hour) ||
(last_day != day) || (last_month != month) || (last_year != year) ||
(last_century != century) );
registerB = get_rtc_reg(0x0B);
// Convert BCD to binary values if necessary
if (!(registerB & 0x04)) {
second = (second & 0x0F) + ((second / 16) * 10);
minute = (minute & 0x0F) + ((minute / 16) * 10);
hour = ( (hour & 0x0F) + (((hour & 0x70) / 16) * 10) ) | (hour & 0x80);
day = (day & 0x0F) + ((day / 16) * 10);
month = (month & 0x0F) + ((month / 16) * 10);
year = (year & 0x0F) + ((year / 16) * 10);
if(century_register != 0) {
century = (century & 0x0F) + ((century / 16) * 10);
}
}
// Convert 12 hour clock to 24 hour clock if necessary
if (!(registerB & 0x02) && (hour & 0x80)) {
hour = ((hour & 0x7F) + 12) % 24;
}
// Calculate the full (4-digit) year
if(century_register != 0) {
year += century * 100;
} else {
year += (CURRENT_YEAR / 100) * 100;
if(year < CURRENT_YEAR) year += 100;
}
// thank you doug16k @ #osdev
// https://github.com/doug65536/dgos/blob/eab7080e69360493381669e7ce0ff27587d3127a/kernel/lib/time.cc
int days[] = {
31,
(year-1900) % 4 ? 28 :
(year-1900) % 100 ? 29 :
(year-1900) % 400 ? 28 :
29,
31,
30,
31,
30,
31,
31,
30,
31,
30,
31
};
int yday = 0;
for (int m = 1; m < month; ++m)
yday += days[m-1];
yday += day - 1;
uint64_t epoch_seconds= ((uint64_t)(second)) +
minute * 60 +
hour * 3600 +
(yday) * 86400 +
(year-1900 - 70) * 365 * 86400 +
((year-1900 - 69) / 4) * 86400 -
((year-1900 - 1) / 100) * 86400 +
((year-1900 + 299) / 400) * 86400;
return epoch_seconds;
}
uint32_t timer_interrupt(uint32_t esp)
{
asm_pit_tick();
return esp;
}
// PIT
uint64_t timer_init()
{
uint64_t epoch_time=get_rtc_time();
task_system_clock_start=epoch_time*25; // since pit ticks 25times a second
asm_pit_rate_40ms(); //tick at 25hz
fixme("pit rate does only seem to work occasionally.. 1/25 seconds???" );
interrupt_register(INTERRUPT_PIT_TIMER,&timer_interrupt);
return epoch_time;
}
uint64_t timer_get_ms()
{
return (asm_pit_get_ticks()+task_system_clock_start)*40;
}
uint64_t timer_get_uptime_ms()
{
return asm_pit_get_ticks()*40;
}
|