summaryrefslogtreecommitdiff
path: root/kernel/timer.c
blob: a339d70d2dc99893e0ea55080ab2995620e2c64f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/// PIT /// Timer stuff // CMOS

/*
 http://www.brokenthorn.com/Resources/OSDevPit.html
 https://wiki.osdev.org/CMOS

 vcc/gnd - voltage/ground

 D0-D7 - data lines		(data bus)
 wr/rd - writing / reading	(system control bus) 
 cs - ignore wr/rd or not	(address bus)
 a0-a1				(address bus)

 // the three 16bit down counters/timers/channels
 clk	0-2 (in)
 gate	0-2 (in)
 out	0-2 (out)

 //typical
    out1 -> pic  interrupt on every tick (system timer)
    out2 - was used for genearting dram memory refresh  (Do not use)
    out3 -> pc speaker

    gate pins : depend on mode of operation
    we do have modes 0-5.
    mode0: counts down to zero , triggers interrupt and waits 
    mode1: 
    mode2: rate generator (sys timer)
    ....
 */

#define FOOLOS_MODULE_NAME "timer"

#include "timer.h"
#include "x86.h"
#include "lib/logger/log.h"

// TODO: use mutex? do we need volatile at all!??
// abstract atomic variable set,get,increment
static volatile uint64_t task_system_clock=0;

//called by interrupt
void timer_tick()
{
    task_system_clock++;
}

// get value
uint64_t timer_get_ticks()
{
    return task_system_clock;
}
///

uint64_t timer_get_ms()
{
    uint64_t t=timer_get_ticks();
    uint64_t s=t/25;
    uint64_t ms=0; // TODO ms
    return s*1000;
}

// CMOS RTC

 
// read real time clock register
unsigned char get_rtc_reg(int reg) {
      x86_outb(0x70, reg);	//cmos at addr 0x70
      return x86_inb(0x71);	//cmos data at addr 0x71
}

// check if cmos rtc update in progress
int get_rtc_update_flag() {
      x86_outb(0x70, 0x0A);
      return (x86_inb(0x71) & 0x80);
}

// get real time clock rom cmos (seconds since jan)
uint64_t get_rtc_time()
{

    int CURRENT_YEAR = 2018;	    // Change this each year!
 
    int century_register = 0x00;    // Set by ACPI table parsing code if possible
    
    unsigned char second;
    unsigned char minute;
    unsigned char hour;
    unsigned char day;
    unsigned char month;
    unsigned int year;

      unsigned char century;
      unsigned char last_second;
      unsigned char last_minute;
      unsigned char last_hour;
      unsigned char last_day;
      unsigned char last_month;
      unsigned char last_year;
      unsigned char last_century;
      unsigned char registerB;
 
      // Note: This uses the "read registers until you get the same values twice in a row" technique
      //       to avoid getting dodgy/inconsistent values due to RTC updates
 
      while (get_rtc_update_flag());                // Make sure an update isn't in progress
      second = get_rtc_reg(0x00);
      minute = get_rtc_reg(0x02);
      hour = get_rtc_reg(0x04);
      day = get_rtc_reg(0x07);
      month = get_rtc_reg(0x08);
      year = get_rtc_reg(0x09);

      if(century_register != 0) {
            century = get_rtc_reg(century_register);
      }
 
      do {
            last_second = second;
            last_minute = minute;
            last_hour = hour;
            last_day = day;
            last_month = month;
            last_year = year;
            last_century = century;
 
            while (get_rtc_update_flag());           // Make sure an update isn't in progress
            second = get_rtc_reg(0x00);
            minute = get_rtc_reg(0x02);
            hour = get_rtc_reg(0x04);
            day = get_rtc_reg(0x07);
            month = get_rtc_reg(0x08);
            year = get_rtc_reg(0x09);
            if(century_register != 0) {
                  century = get_rtc_reg(century_register);
            }
      } while( (last_second != second) || (last_minute != minute) || (last_hour != hour) ||
               (last_day != day) || (last_month != month) || (last_year != year) ||
               (last_century != century) );
 
      registerB = get_rtc_reg(0x0B);
 
      // Convert BCD to binary values if necessary
      if (!(registerB & 0x04)) {
            second = (second & 0x0F) + ((second / 16) * 10);
            minute = (minute & 0x0F) + ((minute / 16) * 10);
            hour = ( (hour & 0x0F) + (((hour & 0x70) / 16) * 10) ) | (hour & 0x80);
            day = (day & 0x0F) + ((day / 16) * 10);
            month = (month & 0x0F) + ((month / 16) * 10);
            year = (year & 0x0F) + ((year / 16) * 10);
            if(century_register != 0) {
                  century = (century & 0x0F) + ((century / 16) * 10);
            }
      }
 
      // Convert 12 hour clock to 24 hour clock if necessary
      if (!(registerB & 0x02) && (hour & 0x80)) {
            hour = ((hour & 0x7F) + 12) % 24;
      }
 
      // Calculate the full (4-digit) year
      if(century_register != 0) {
            year += century * 100;
      } else {
            year += (CURRENT_YEAR / 100) * 100;
            if(year < CURRENT_YEAR) year += 100;
      }
    
     // return ((((uint64_t)year-1970)*356;//+month*30+day)*24+hour*60+minute)*60+second;
     
     // thank you doug16k @ #osdev
     // https://github.com/doug65536/dgos/blob/eab7080e69360493381669e7ce0ff27587d3127a/kernel/lib/time.cc
          int days[] = {
        31,
        (year-1900) % 4 ? 28 :
        (year-1900) % 100 ? 29 :
        (year-1900) % 400 ? 28 :
        29,
        31,
        30,
        31,
        30,
        31,
        31,
        30,
        31,
        30,
        31
    };

    int yday = 0;
    for (int m = 1; m < month; ++m)
        yday += days[m-1];
    yday += day - 1;

      uint64_t epoch_seconds= ((uint64_t)(second)) +
            minute * 60 +
            hour * 3600 +
            (yday) * 86400 +
            (year-1900 - 70) * 365 * 86400 +
            ((year-1900 - 69) / 4) * 86400 -
            ((year-1900 - 1) / 100) * 86400 +
            ((year-1900 + 299) / 400) * 86400;

      log(FOOLOS_MODULE_NAME,FOOLOS_LOG_INFO,"CMOS Hardware Clock: %u-%u-%u %u:%u:%u",day,month,year,hour,minute,second);
      log(FOOLOS_MODULE_NAME,FOOLOS_LOG_INFO,"CMOS Hardware Clock: %u seconds since Epoch",epoch_seconds);

      return epoch_seconds;
}

// PIT
// TODO: move to asm file
void timer_init()
{
    uint64_t epoch_time=get_rtc_time();
    epoch_time*=25;
    task_system_clock=epoch_time;

    // config out timer on channel 0 : mode 2 (sys timer)
    // http://en.wikipedia.org/wiki/Intel_8253#Control_Word_Register
    // http://www.brokenthorn.com/Resources/OSDevPit.html
    // int0 will be triggered ~25 times a second.
    
    __asm__("pusha");

    __asm__("mov %0, %%dx"::"X" (1193180 / 25));

    __asm__("mov $0b00110100, %al");
    __asm__("out %al,$0x43");

    __asm__("mov %dx,%ax");

    __asm__("out %al, $0x40");
    __asm__("xchg %ah,%al");
    __asm__("out %al, $0x40");

    __asm__("popa");

    log(FOOLOS_MODULE_NAME,FOOLOS_LOG_INFO,"Configured PIT Channel 0 : Mode 2 : 1/25 s.");
}